

www.nimco-controls.com

# SPV-PROPORTIONAL PRESSURE REDUCING VALVE



www.nimco-controls.com



| Page 5  | Product Specification             |
|---------|-----------------------------------|
| Page 6  | General Data                      |
| Page 7  | Electrical Data                   |
| Page 7  | P-L Characteristic Curve          |
| Page 9  | Pressure Drop                     |
| Page 11 | Internal Leakage                  |
| Page 12 | Step Respons                      |
| Page 13 | Small Signal Test                 |
| Page 14 | Current Cycle Test                |
| Page 15 | Pressure Resistence               |
| Page 16 | Mounting Flange Endurance Test    |
| Page 17 | Temperature Operating Range       |
| Page 17 | Thermal Stress on the Solenoid    |
| Page 18 | Pressure Medium                   |
| Page 18 | Mechanical Stress on the Solenoid |
| Page 18 | Vibration Test                    |
| Page 19 | Salt spray Test                   |



### **Overview AMP Connector**

| Nimco Ident-Nr.12V |          |  |
|--------------------|----------|--|
| pA [bar]           | Part No. |  |
| 20                 | 12547-4K |  |
| 25                 | 12631-4K |  |

#### Nimco Ident-Nr.24V

| pA [bar] | Part No. |
|----------|----------|
| 20       | 12548-4K |
| 25       | 13761-4K |

#### **Overview DEUTSCH Connector**

## Nimco Ident-No. 12V

| pA [bar] | Part No. |
|----------|----------|
| 20       | 13596-4K |
| 25       | 13762-4K |

#### Nimco Ident-No. 24V

| pA [bar] | Part No. |
|----------|----------|
| 20       | 13580-4K |
| 25       | 13763-4K |

This document contains the specification of the proportional cartridge valve Model SPV 12V/24V. Additional data is available on Nimco specification drawings, upon request.



## **GENERAL DATA**

| Valve and Cavity Dimensions | See Nimco drawing number                                                                        |
|-----------------------------|-------------------------------------------------------------------------------------------------|
| Installation position       | Any                                                                                             |
| Weight                      | 175g/0,38lbs                                                                                    |
| Protection class            | DIN 40050-9: IP6k 6/IPX9K                                                                       |
| Electrical connections      | Deutsch Connector DT04-2P or AMP Junior Power Timer                                             |
| Min. supply voltage         | 12V / 24V                                                                                       |
| Supply pressure             | pP,max = 50 bar, psi=725                                                                        |
| Standards cited             | ISO: 4406 DIN EN 60068 DIN: EN 51524 DIN 40050-9 DIN 50021-SS                                   |
| Field damage of valves      | For the applications we refer to Nimcos Sales and Warranty Conditions                           |
| Field damage of connector   | For the applications we refer to Nimcos Sales Warranty Conditions                               |
| Filtration element          | All values given here refer to all clean internal filtration screen. If the internal filtration |
|                             | screen in this cartridge element is contaminated more than 50%, the screen might                |
|                             | break and a malfunction of the SPV valve can occur.                                             |



## ELECTRICAL DATA

| Voltage               | 12V       | 24V       |
|-----------------------|-----------|-----------|
| R20 [Ohm]             | 4,72 ± 5% | 20,8 ± 5% |
| I <sub>1</sub> [mA]   | 600 ± 10  | 300 ±10   |
| I <sub>max</sub> [mA] | 1500 ± 10 | 750 ±10   |

Table 2: Coil resistance, current I1 and maximal current Imax according to voltage.

It is recommended that electrical power should be supplied to the valve via a current controlled,

Pulse-Width Modulated amplifier board, limiting the current to Imax.

#### P-L-CHARACTERISTIC CURVE

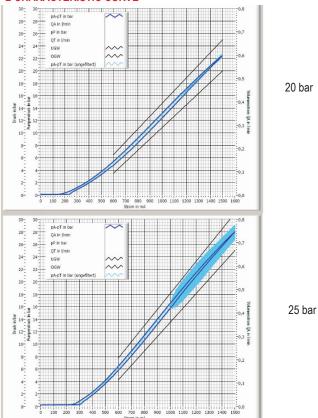



Figure 1: P-I limiting window

| Boundary conditions |                                                       |
|---------------------|-------------------------------------------------------|
| Control             | High speed PWM with 20kHz,overlaid with rectangular   |
|                     | dithersignal from 100Hz, amplitude 200mA peak to peak |
| Current variation   | 140 mA/s (12V), 100mA/s (24V)                         |
| Mounting position   | Valve body vertically downward                        |
| Fluid temperature   | 50 ±3 °C, 123 ± 38 °F                                 |
| Ambient temperature | 23 ±7 °C, 73 ± 47 °F                                  |
| Fluid               | DIN 51524 HLPD46                                      |
| Limiting window     | See graph above                                       |



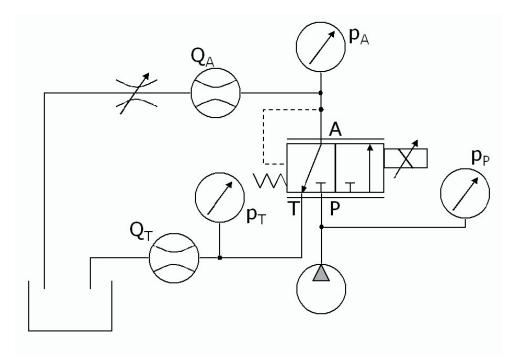

| p <sub>A</sub> [bar] | p <sub>A</sub> (I <sub>1</sub> ) [bar] | $p_A(I_{max})$ [bar]           | P <sub>P</sub> [bar]/psi | Hysteresis max [bar]     |
|----------------------|----------------------------------------|--------------------------------|--------------------------|--------------------------|
| 20                   | 3.50 < p(I <sub>1</sub> ) < 6.50       | 20 < p(I <sub>max</sub> ) < 25 | 35 ±2 / 508±70           | 5% from nominal pressure |
| 25                   | 4.25 < p(I <sub>1</sub> ) < 7.75       | 25 < p(I <sub>max</sub> ) < 31 | 35 ±2 / 508±30           | 5% from nominal pressure |

Table: 3, pA, pA, min, pA, max an hysteresis

#### Warning

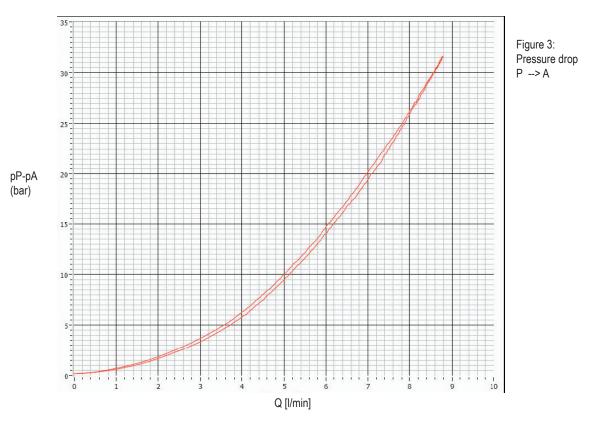
Depending on the application and system where the SPV cartridge is used , note that the system tank pressure will be added to the working pressure. At measure point  $P_A$  in the below schematic tank pressure should be deducted to get the correct reading of messure point  $P_A$ 

Figure 2: hydraulic test set-up for the p-I curve and flow measurement from P to A





## PRESSURE DROP

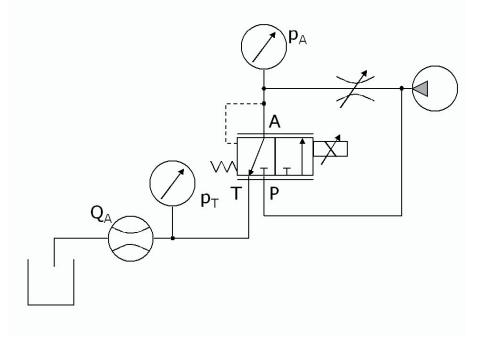

| Flow measurement from P to A |                        |                                            |                          |
|------------------------------|------------------------|--------------------------------------------|--------------------------|
| p <sub>A</sub> [bar]         | Q <sub>A</sub> [I/min] | Δp=(p <sub>P</sub> -p <sub>A</sub> ) [bar] | p <sub>P</sub> [bar]/psi |
| 20                           | 4                      | ≤9,5                                       | 35 ± 2 / 506 ±30         |
| 25                           | 4                      | ≤ 12                                       | 35 ± 2 / 508 ±30         |

I=Imax; with filter screen

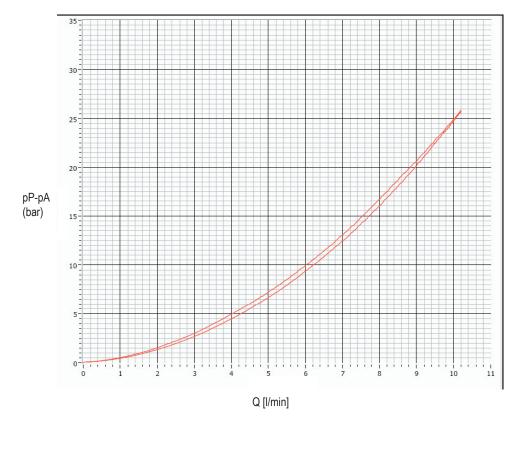
Fluid temperature: 50°C

Hydraulic test procedure for the Pressure Drop Testing

from P to A; see figure 2




| Flow Measurement from A to T |                        |                                            |                  |
|------------------------------|------------------------|--------------------------------------------|------------------|
| p <sub>A</sub> [bar]         | Q <sub>A</sub> [I/min] | Δp=(p <sub>A</sub> -p <sub>T</sub> ) [bar] | pp [bar] / psi   |
| 20                           | 4                      | ≤6                                         | 35 ± 2 / 508 ±30 |
| 25                           | 4                      | ≤ 9,5                                      | 35 ± 2 / 508 ±30 |




I=Imax; Fluid temperature: 50°C Hydraulic test procedure for the Pressure Drop Testing from A to T; see schematic

Figure 4: hydraulic test procedure for the Pressure Drop testing from A to T

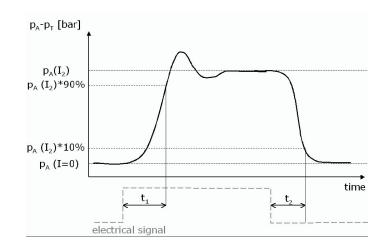






## INTERNAL LEAKAGE

| Internal Leakage Energized | A>T                        |                     |
|----------------------------|----------------------------|---------------------|
| max flow rate              | Q [ml/min] / gpm           | ≤ 150 / ≤0,039      |
| current                    | l [mA]                     | I <sub>max</sub>    |
| Fluid temperature          |                            | 50°C / 122°F        |
| pump pressure              | p <sub>P</sub> [bar] / psi | 35 ± 2 / 508 ±30psi |


| Internal Leakage De-Energized | P>T                        |                  |
|-------------------------------|----------------------------|------------------|
| max flow rate                 | Q [ml/min] / gpm           | ≤ 30 / ≤11       |
| current                       | I [mA]                     | I=0              |
| Fluid temperature             |                            | 50°C / 122°F     |
| pump pressure                 | p <sub>P</sub> [bar] / psi | 35 ± 2 / 508 ±30 |



#### **STEP RESPONS**

| Boundary conditions step respons |                                     |  |
|----------------------------------|-------------------------------------|--|
| Pump pressure                    | 50 ± 2 bar , 725 ±30psi             |  |
| Setup                            | with pressure accumulator at P-port |  |
| Fluid                            | DIN 51524 HLPD46                    |  |

Figure 6: dynamic step response



| Response time, | I=0mA> Imax                                                   |
|----------------|---------------------------------------------------------------|
| on and off @   | t <sub>1</sub> (pA=90% pA(Imax)) < 50 ms                      |
| 50°Cv          | Overshoot = max. 50% of $p_S$ , after 100ms max. 20% of $p_S$ |
|                | oil-temp +50 °C, 122° F                                       |
|                | ambient temp+20°C, 68° F                                      |
|                | I <sub>2</sub> =Imax I=0mA                                    |
|                | t <sub>2</sub> (pA=10%*pA(Imax)) < 50 ms                      |
|                | oil-temp +50°C, 122° F                                        |
|                | ambient temp +20°C, 68° F                                     |
| Response time  | I=0mA> I <sub>max</sub>                                       |
| On and off     | t <sub>1</sub> (pA=90% p <sub>A</sub> (Imax)) < 400 ms        |
| @ -10°C        | oil-temp max -10 °C, 14° F                                    |
|                | ambient temp max -10 °C, 14° F                                |
|                | I2=Imax I=0mA                                                 |
|                | t2 (pA=10%*pA(Imax)) < 300 ms                                 |
|                | oil-temp.: max -10 °C, 14° F                                  |
|                | ambient temp.: max -10 °C, 14° F                              |
|                |                                                               |

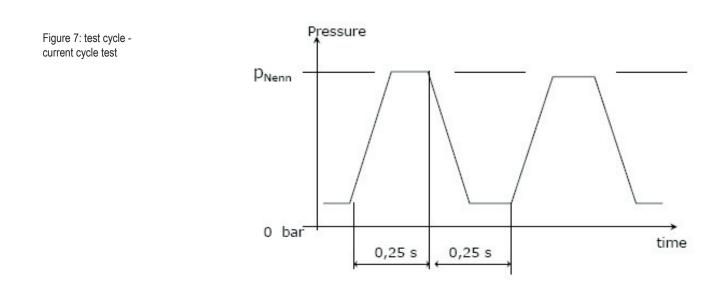
Oil temp max. -30°C, (-22 °F) ambient temp.max. -30°C, (-22 °F) function is - dependent on the pourpoint - warranted

Mounting position: Valve sleeve vertically downward



# SMALL SIGNAL TEST

|    | ΔI [mA]      | Δpmin [bar]             |                    |
|----|--------------|-------------------------|--------------------|
| 20 | ΔI = 12.5 mA | Δpmin = 0.300 bar/10psi | during 1s for 24 V |
|    | ΔI = 25.0 mA | Δpmin = 0.300 bar/10psi | during 1s for 12 V |
| 25 | ΔI = 12.5 mA | Δpmin = 0.400 bar/10psi | during 1s for 24 V |
|    | ΔI = 25.0 mA | Δpmin = 0.400 bar/10psi | during 1s for 12 V |


Output measured pressure step as an average value over 0.5 s, valid for decreasing steps.

# EDURANCE TEST



# **CURRENT CYKLE TEST**

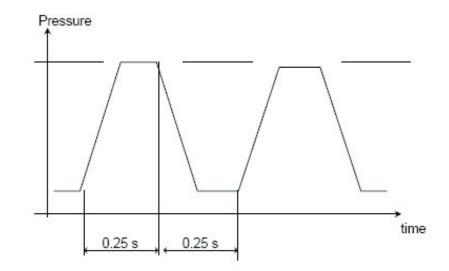
| Boundary conditions current cycle test |                                          |  |
|----------------------------------------|------------------------------------------|--|
| Number of cycles                       | 5*106                                    |  |
| Frequency                              | 2 Hz                                     |  |
| Current variation                      | I=0 to I <sub>max</sub>                  |  |
| Control                                | See figure 1                             |  |
| Pressure variation                     | 0 to pNenn                               |  |
| pP                                     | 35 ± 2bar, 508 ±30 psi                   |  |
| pT                                     | 0 bar, assumed open to atmosphere        |  |
| Mounting position                      | Horizontal, assuming the mean valve axis |  |
| A-port connection                      | Pressure accumulator                     |  |





## PRESSURE RESISTANCE

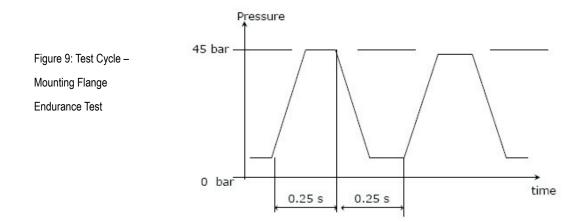
#### Pressure Resistance of the solenoid tube


Purpose: The endurance of the valve is tested against static and dynamic load of the return pressures.

| Boundary conditions for static test |                                                          |
|-------------------------------------|----------------------------------------------------------|
| <sup>p</sup> Tmax                   | 50 bar, 725 psi                                          |
| I                                   | 0 mA                                                     |
| Pressure rise                       | pressure generated by hand pump until                    |
| Oil temperature                     | 20 °C. 68°F                                              |
| Remark                              | Pressure above the dynamic stability may cause permanent |
|                                     | damage and a reduction of the valve lifetime.            |

| Boundary conditions for dynamic test |  |  |
|--------------------------------------|--|--|
| 30 bar / 435 psi                     |  |  |
| 5*10 <sup>6</sup>                    |  |  |
| 2 Hz                                 |  |  |
| 0 - 30 bar, 0-435psi                 |  |  |
| 750 bar/s, 10877psi/s                |  |  |
| 0 mA                                 |  |  |
|                                      |  |  |




Figure 8: test cycle – pressure resistance of the solenoid tube



## MOUNTING FLANGE ENDURANCE TEST

Purpose: The resistance of the flange is tested against dynamic pressure in the cavity. The pressure variation of the ports is geared to maximum allowed pressures and the associated surfaces.

| Boundary conditions for dynamic test |                                                                     |
|--------------------------------------|---------------------------------------------------------------------|
| number of cycles                     | 2*106                                                               |
| frequency                            | 2 Hz                                                                |
| pressure variation                   | over the entire sealing surface of the tank (based on standard test |
| rate of pressure rise                | 750 bar/s , 10877psi/s                                              |
| <u> </u>                             | 0 mA                                                                |





# **TEMPERATUR OPERATING RANGE**

| Operation range      |                                                                                            |
|----------------------|--------------------------------------------------------------------------------------------|
| Ambient temperature: | -30°C to +80°C ,-22 to +170°F                                                              |
| Fluid temperature:   | -30°C to +105°C, -22 to +221°F                                                             |
| Block temperature    | max. 80°C (176°F)at the mounting surface at 100% duty cycle with $\mathrm{I}_{\mbox{max}}$ |

#### THERMAL STRESS ON THE SOLENOID

| Boundary conditions heat gradient |               |  |
|-----------------------------------|---------------|--|
| Block temperature:                | 105°C, 121 °F |  |
| Ambient temperature               | 80°C, 170 °F  |  |

| Voltage[V] | Current     | Duty cycle[% ED] | Rwarm | Coil-temperature[°C] | Cycleduration[min] | tmax[min] |
|------------|-------------|------------------|-------|----------------------|--------------------|-----------|
| 12         | lconst=lmax | 100%             | 1)    | 1)                   | 1)                 | 1)        |
| 24         | lconst=lmax | 80°C, 176 °F     | 1)    | 1)                   | 1)                 | 1)        |

Table 6: Thermal stress-Coil temperature



### PRESSURE MEDIUM

| Specification Pressure medium |                                                                    |  |
|-------------------------------|--------------------------------------------------------------------|--|
| Mineral oils:                 | HL and HLP according to DIN 51524                                  |  |
| Biodegradable hydraulic oil:  | The corrosion resistance of the valve must be checked before       |  |
|                               | using biodegradable hydraulic oil.                                 |  |
|                               | The solenoid parts should be affected as little as possible by     |  |
|                               | biodegradable hydraulic oils. If Nimco or the customer finds out   |  |
|                               | that the solenoid is affected by specific biodegradable oil either |  |
|                               | company should be notified by the other party about the oil effect |  |
|                               | and also which effect it is causing the performance of the SPV     |  |
| viscosity range:              | kinematic viscosity 10 cSt - 400 cSt for ISO VG 46                 |  |
| Contamination class:          | according to ISO 4406                                              |  |

#### **MECHANICAL STRESS ON THE SOLENOID**

| Shock test Conditions                       |                           |
|---------------------------------------------|---------------------------|
| Standard                                    | IEC68-2-27 Ea             |
| Setup                                       | valve in block            |
| acceleration                                | 50 g                      |
| time to complete the shock in one direction | 11 ms, 0,11 lbs           |
| - X+,X-,Y+,Y-,Z+,Z-:                        | 3 times in each direction |

## **VIBRATION TEST**

| Boundary conditions vibration test |                              |
|------------------------------------|------------------------------|
| Standard                           | DIN EN 60068-2-64 Fh         |
| 10 to 250 Hz:                      | 0.1 g²/Hz, 0,0022 ibs²/Hz    |
| 250 to 500 Hz:                     | -9dB/octave                  |
| Axis                               | X,Y,Z at 90-minute intervals |



## SALT SPRAY TEST

| Boundary conditions salt spray test |                                                                      |
|-------------------------------------|----------------------------------------------------------------------|
| Standard                            | DIN 50021-SS,                                                        |
| Duration                            | DIN EN 12329: 192 hours                                              |
| Function after the test:            | According to drawing                                                 |
| Axis                                | Hydraulic function according to the boundary conditions in at        |
|                                     | page 7 have to be fulfilled before spray test                        |
|                                     | Corrosion of the protective coating on the housing surface may       |
|                                     | occur (points with white corrosionproducts)                          |
|                                     | Corrosion products from the base material may occur in the           |
|                                     | stamping area                                                        |
|                                     | There should be no traces of salt or corrosion inside the            |
|                                     | solenoid                                                             |
|                                     | The valve and the connector must be covered with an fully isolated   |
|                                     | plastic cap during the test. Other materials should not be in contac |
|                                     | with the valve                                                       |

# SCREEN

The valve is fittet with a screen at the p-port.side.

# WWW.NIMCO-CONTROLS.COM



# **Nimco Controls**

North America & Asia Corporate Headquarters 1500 S. Sylvania Avenue (USA) Sturtevant, WI 53177 Phone: 262-884-0950 salesusa@nimcous.com

# **Nimco Controls**

Europe 71-75 Shelton Street Covent Garden, London WC2H 9JQ United Kingdom Phone: +44 20 3772 4540 saleseurope@nimco.se

